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Lecture 8 – Thursday December 1, 2016

Combinatorial Planning, Sampling-based 
Motion Planning and Potential Field 

Method
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Objectives

When you have finished this lecture you should be able to:

• Understand Combinatorial Planning, Sampling-based Motion 

Planning and Potential Field Method.
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• Combinatorial Planning

• Sampling-based Motion Planning

• Potential Field Method

Outline



MUSES_SECRET: ORF-RE Project   - © PAMI Research Group – University of Waterloo 4/224L9, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis

• Combinatorial Planning

• Sampling-based Motion Planning

• Potential Field Method

Outline
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The road map approach consists of generating connecting 

cells within mobile robot’s free space into a network of one-

dimensional  curves called a road map.

 Properties of a Roadmap:

◊ Accessibility: there exists a collision-

free path from the start to the road map

◊ Departability: there exists a collision-

free path from the roadmap to the goal.

◊ Connectivity: there exists a collision-

free path from the start to the goal (on 

the roadmap). A roadmap exists  A 
path exists

• Road map

Combinatorial Planning
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Road Map Approaches

Voronoi Diagrams

Visibility Graph

Maklink

Free Way Net

Silhouette

…

• Road map

Combinatorial Planning
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◊ Suppose someone gives you a CSPACE with polygonal 

obstacles.

◊ Visibility graph is formed by connecting all “visible” 

vertices, the start point and the end point, to each other.

◊ For two points to be “visible” no obstacle can exist between 

them, i.e., paths exist on the perimeter of obstacles.

• Road map: Visibility Graph

Combinatorial Planning
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1. Start with a map of the world, draw lines of sight from the 

start and goal to every “corner” of the world and 

vertex of the obstacles, not cutting through any 

obstacles.

2. Draw lines of sight from every vertex of every obstacle 

like above.  Lines along edges of obstacles are lines of sight 

too, since they don’t pass through the obstacles.

3. If the map was in Configuration space, each line potentially 

represents part of a path from the start to the goal.

• Road map: Visibility Graph

Combinatorial Planning
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◊ First, draw lines of sight from the start and goal to all “visible” 

vertices and corners of the world.

S

G

• Road map: Visibility Graph

Combinatorial Planning
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◊ Second, draw lines of sight from every vertex of every obstacle 

like before.  Remember lines along edges are also lines of 

sight.

G

S

• Road map: Visibility Graph

Combinatorial Planning
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◊ Second, draw lines of sight from every vertex of every obstacle 

like before.  Remember lines along edges are also lines of 

sight.

G

S

• Road map: Visibility Graph

Combinatorial Planning
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◊ Second, draw lines of sight from every vertex of every obstacle 

like before.  Remember lines along edges are also lines of 

sight.

G

S

• Road map: Visibility Graph

Combinatorial Planning
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◊ Repeat until you’re done.

◊ Search the graph of these lines for the shortest path (using 

Dijkstra algorithm for example).

S

G

• Road map: Visibility Graph

Combinatorial Planning
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• Cell Decomposition

The idea behind cell decomposition is 

to discriminate between geometric 

areas, or cells, that are free and areas 

that are occupied by objects.

Cell Decomposition

Exact Cell 

Decomposition

Approximate Cell 

Decomposition

Adaptive 

Decomposition

Fixed 

Decomposition

Combinatorial Planning
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◊ Divide environment into simple, connected regions called 

“cells”.

Any path 
within one cell 
is guaranteed 
to not intersect 
any obstacle

• Exact Cell Decomposition

Combinatorial Planning
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◊ Determine which 

opens cells are 

adjacent.

• Exact Cell Decomposition

Combinatorial Planning
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◊ Find the cells in 

which the initial 

and goal 

configurations lie 

and search for a 

path in the 

connectivity graph 

to join the initial 

and goal cell.

• Exact Cell Decomposition

Combinatorial Planning
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◊ Construct the connectivity 

graph.

The connectivity graph of cells defines 
a roadmap

• Exact Cell Decomposition

Combinatorial Planning
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◊ From the sequence of cells 

found with an appropriate 

searching algorithm, 

compute a path within each 

cell, for example, passing 

through the midpoints of 

the cell boundaries or by 

a sequence of wall-

following motions and 

movements along straight 

lines. The connectivity graph of cells defines 
a roadmap

• Exact Cell Decomposition

Combinatorial Planning
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◊ From the sequence of cells 

found with an appropriate 

searching algorithm, 

compute a path within each 

cell, for example, passing 

through the midpoints of 

the cell boundaries or by 

a sequence of wall-

following motions and 

movements along straight 

lines. The graph can be used to find a path
between any two configurations

• Exact Cell Decomposition

Combinatorial Planning
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◊ The key disadvantage of exact cell decomposition is that the 

number of cells and, therefore, overall path planning 

computational efficiency depends upon the density and 

complexity of objects in the environment, just as with 

road map-based systems.

◊ Practically speaking, due to complexities in implementation, 

the exact cell decomposition technique is used relatively 

rarely in mobile robot applications, although it remains a 

solid choice when a lossless representation is highly desirable, 

for instance to preserve completeness fully.

• Exact Cell Decomposition

Combinatorial Planning
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• Approximate Cell Decomposition

◊ By contrast, approximate cell decomposition is one of the 

most popular techniques for mobile robot path planning. 

◊ This is partly due to the popularity of grid-based 

environmental representations. 

Approximate Cell 

Decomposition

Adaptive 

Decomposition

Fixed 

Decomposition

Combinatorial Planning
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• Fixed Decomposition

1. Define a discrete grid in C-Space

2. Mark any cell of the grid that intersects obstacles as blocked

3. Find path through remaining cells by using (for example) A* 

(e.g., use Euclidean distance as heuristic)

◊ Cannot be complete as described so far. Why? 

S

G

Combinatorial Planning
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S

G

• Fixed Decomposition

The key disadvantage of this 

approach stems from its inexact 

nature. It is possible for narrow 

passageways to be lost during  

such a transformation. 

Cannot find a path in this case even 
though one exists.

Combinatorial Planning
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• Adaptive Decomposition

1. Distinguish between Cells that are entirely contained in 

obstacles (FULL) and Cells that partially intersect obstacles 

(MIXED)

2. Try to find a path using the current set of cells.

3. If no path found:

Subdivide the MIXED cells and try again with the new set 

of cells.

Combinatorial Planning



MUSES_SECRET: ORF-RE Project   - © PAMI Research Group – University of Waterloo 26/2226L9, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis

S

G

• Adaptive Decomposition

Combinatorial Planning
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• Adaptive Decomposition

Combinatorial Planning
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• Approximate Cell Decomposition

◊ Pros:

 Limited assumptions on obstacle configuration

 Approach used in practice 

 Find obvious solutions quickly

◊ Cons:

 No clear notion of optimality (“best” path)

 Trade-off completeness/computation

 Still difficult to use in high dimensions

Combinatorial Planning



MUSES_SECRET: ORF-RE Project   - © PAMI Research Group – University of Waterloo 29/2229L9, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis

• Combinatorial Planning

• Sampling-based Motion Planning

• Potential Field Method

Outline
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• The main idea of sampling-based motion planning is to avoid 

the explicit construction of 𝒞obs, and instead conduct a search 

that probes the C-space with a sampling scheme.

Sampling-based Motion Planning

Geometric 
Models

Collision 
Detection

Sampling-based Motion 
Planning Algorithm

Discrete 
Searching

C-Space 
Sampling

[1]

• The sampling-based planning philosophy uses collision 
detection as a “black box” that separates the motion planning 
from the particular geometric and kinematic models. 

• C-space sampling and discrete planning (i.e., searching) are 
performed.
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Sampling-based Motion Planning

Sampling-based Motion Planning

Multiple-query motion 
planning problems

(numerous initial-goal queries)
Probabilistic Roadmaps (PRMs) or 

sampling-based roadmaps

Single-query motion 
planning problems

(single initial-goal pair)
Rapidly-exploring Random 

Trees  (RRTs)
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• Rapidly-Exploring Random Tree (RRT)

Sampling-based Motion Planning

1. Initially, start with the 

initial configuration as root 

of tree

2. Pick a random state in the 

configuration space

3. Find the closest node in 

the tree

4. Extend that node toward 

the state if possible

5. Go to (2)
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• Rapidly-Exploring Random Tree (RRT)

Sampling-based Motion Planning

Algorithm BuildRRT
Input: Initial configuration qinit, number of vertices in RRT K, incremental distance 
Δq)
Output: RRT graph T
1. T.init(qinit)
2. for k = 1 to K
3. qrand ← RAND_CONF()
4. qnear ← NEAREST_VERTEX(qrand, T)
5. qnew ← NEW_CONF(qnear, qrand, Δq)
6. T.add_vertex(qnew)
7. T.add_edge(qnear, qnew)
8. return T
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• Rapidly-Exploring Random Tree (RRT)

Sampling-based Motion Planning

◊ Initially, a vertex is made at q0

◊ A new edge is added that connects (i) from the sample to the 

nearest point in the swath S, which is the vertex qn.

where swath, S, of the graph

𝑆 = 

𝑒∈𝐸

𝑒( 0,1 ]

𝑒 0,1 ⊆ ∁𝑓𝑟𝑒𝑒 is the image of the path e [1]
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• Rapidly-Exploring Random Tree (RRT)

Sampling-based Motion Planning

[1]

◊ For k iterations, a tree is iteratively grown by connecting 

(i) to its nearest point in the swath, S.

If the nearest point in S lies in an edge, then the edge is split into two, and a new 
vertex is inserted into the graph

◊ The connection is usually made along the shortest possible 

path. In every iteration, (i) becomes a vertex. Therefore, 

the resulting tree is dense.
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• Rapidly-Exploring Random Tree (RRT)

Sampling-based Motion Planning

[1]

In the early iterations, the RRT quickly reaches the unexplored parts. However, the 

RRT is dense in the limit (with probability one), which means that it gets arbitrarily 

close to any point in the space.
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• Rapidly-Exploring Random Tree (RRT)

Sampling-based Motion Planning

STEP_LENGTH: How far to sample

1. Sample just at end point

2. Sample all along

3. Small Step 

Extend returns

1. Trapped, cant make it

2. Extended, steps toward node

3. Reached, connects to node

Collection Check

Lazy collision checking 6x faster than checking every 
single point for collision at the time when it's added
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• Rapidly-Exploring Random Tree (RRT)

Sampling-based Motion Planning

[2]Bi-directional search
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• Rapidly-Exploring Random Tree (RRT)

Sampling-based Motion Planning

A real-time path planning algorithm based on RRT*
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Sampling-based Motion Planning

• Probabilistic Roadmaps (PRMs)

Given: G(V,E) represents a 
topological graph in which V is a 
set of vertices and E is the set of 
paths that map into 𝒞free.

Under the multiple-query philosophy, motion planning is 
divided into two phases of computation:

Preprocessing/Learning  Phase Query Phase

Build G in a way that is useful for 
quickly answering future queries. For 

this reason, it is called a roadmap, 
which in some sense should be 

accessible from every part of 𝒞free.

roadmap

query
(qinit,qgoal) pair

Path

[1]
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Sampling-based Motion Planning

• PRM: Preprocessing/Learning Phase

The sampling-based roadmap 
is constructed incrementally by 
attempting to connect each 
new sample, (i), to nearby 
vertices in the roadmap

Note that i is not incremented if (i) is in collision. This forces i
to correctly count the number of vertices in the roadmap.

[1]

Possible selection methods:
 Nearest K;
 Radius;
 Visibility
 …
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Sampling-based Motion Planning

• PRM: Preprocessing/Learning Phase

[3]
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Sampling-based Motion Planning

• PRM: Preprocessing/Learning Phase

[3]
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Sampling-based Motion Planning

• PRM: Preprocessing/Learning Phase

[3]
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Sampling-based Motion Planning

• PRM: Preprocessing/Learning Phase

[3]
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Sampling-based Motion Planning

• PRM: Preprocessing/Learning Phase

[3]
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Sampling-based Motion Planning

• PRM: Preprocessing/Learning Phase

[3]
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Sampling-based Motion Planning

• PRM: Preprocessing/Learning Phase

[3]
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Sampling-based Motion Planning

• PRM: Preprocessing/Learning Phase

[3]
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Sampling-based Motion Planning

• PRM: Preprocessing/Learning Phase

[3]
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Sampling-based Motion Planning

• PRM: Preprocessing/Learning Phase

[3]
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Sampling-based Motion Planning

• PRM: Preprocessing/Learning Phase

Example of a roadmap for a point root in a two-dimensional Euclidean space. The 
gray areas are obstacles. The empty circles correspond to the nodes of the roadmap. 

The straight lines between circles correspond to edges. The number k closet neighbors 
for the construction of roadmap is three. The degree of a node can be greater than 

three since it may be included in the closest neighbor list of many nodes.
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Sampling-based Motion Planning

• PRM: Query Phase

◊ Given an initial position and a final 

position or (qinit,qgoal) pair, the roadmap 

should compute a collision-free path 

between these two configurations.

◊ First, we create new nodes for each of the initial and final 

position we add them to the graph after a collision test if 

needed. 

◊ Then, we try to connect the two nodes to the graph to any of 

their neighbors, just like as we did in the learning phase.

◊ If the path planner fails to compute a feasible path between 

the new nodes and the existing nodes, the query phase fails.
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Sampling-based Motion Planning

• PRM: Summary

a) A set of random sample is 

generated in the configuration 

space. Only collision-free samples 

are retrained.

b) Each sample is connected to its 

nearest neighbors using a simple, 

straight-line path. If such a path 

causes a collision, the 

corresponding samples are not 

connected in the roadmap

[4]
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Sampling-based Motion Planning

• PRM: Summary

c) Since the initial roadmap contains 

multiple connected components, 

additional samples are generated and 

connected to the roadmap.

d) A path from qinit to qgoal is found by 

connected qinit and qgoal to the 

roadmap and then searching this 

augmented roadmap for a path from 

qinit to qgoal

[4]
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Sampling-based Motion Planning

• PRM: Summary

Custom Processor Speeds Up Robot Motion Planning by 
Factor of 1,000

http://spectrum.ieee.org/automaton/robotics/robotics-software/custom-processor-speeds-up-robot-motion-planning-by-factor-of-1000/?utm_source=RoboticsNews&utm_medium=Newsletter&utm_campaign=RN07052016
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• Combinatorial Planning

• Sampling-based Motion Planning

• Potential Field Method

Outline
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The potential field method incrementally explores 𝓒free, 

searching for a path from qinit to qfinal. At termination, this planner 

returns a single path.

Potential field path planning creates a field, or gradient, across 

the robot’s map that directs the robot to the goal position from 

multiple prior positions. 

Robot

Goal

Obstacle
The potential field method 

treats the robot as a point 

under the influence of an 

artificial potential 

field, U(q).

Potential Field Method
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The robot moves by following the field, just as a ball would roll 

downhill. The goal (a minimum in this space) acts as an 

attractive force on the robot and the obstacles act as peaks, or 

repulsive forces. The superposition of all forces is applied to the 

robot.

Start

+
Goal

Obstacle

Potential Field Method
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The artificial potential field smoothly guides the robot 

toward the goal while simultaneously avoiding known 

obstacles.

Attraction

Repulsion

Potential Field Method
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Assume that the robot is a point, thus the robot’s orientation is 

neglected and the resulting potential field is only 2D (x,y). 

Assume a differentiable potential field function U(q).

The related artificial force acting at the position q=(x,y) is

Robot

Goal

Obstacle

q=(x,y) 

)()( qUqF 

where                denotes the 

gradient vector of U at position q.

)(qU




























y

U
x

U

qU )(

Potential Field Method
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The potential field acting on the robot is then computed as the 

sum of the attractive field of the goal and the repulsive 

fields of the obstacles:

)()()( qUqUqU repatt 

◊ Uatt is the “attractive” potential --- move to the goal

◊ Urep is the “repulsive” potential --- avoid obstacles

Potential Field Method
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◊ katt is a positive scaling factor

◊ dgoal denotes the Euclidean distance 

Quadratic Potential

)(.
2

1
)( 2 qdkqU goalattatt 

goalqq

where

• Attractive Potential

Potential Field Method
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).(.)()( goalattgoalgoalattattatt qqkddkqUqF 

This converges linearly 

toward 0 as the robot 

reaches the goal

This attractive potential is differentiable, leading to the 

attractive force:

)(.
2

1
)( 2 qdkqU goalattatt 

NOTE: q is a vector 
corresponding to a 
position in the 
workspace











y

x

q

q
q

• Attractive Potential

Potential Field Method
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◊ The idea behind the repulsive potential is to generate a force 

away from all known obstacles. 

◊ This repulsive potential should 

be very strong when the robot 

is close to the object, but 

should not influence its 

movement when the robot is far

from the object.

• Repulsive Potential

Potential Field Method
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◊ krep is again a scaling factor, 

◊ dobj is the minimal distance from q to the object and

◊ Q* is the distance of influence of the object. 

where

• Repulsive Potential

Potential Field Method
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◊ The repulsive potential 

function is positive or 

zero and tends to 

infinity as gets closer to 

the object.

• Repulsive Potential

Potential Field Method
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The repulsive force is




























*

*

2*

)(0

)(.
1

.
1

)(

1
.

)()(

Qqd

Qqdd
dQqd

k
qUqF

obj

objobj

objobj

rep

reprep

where            denotes the partial derivate vector of the distance 
from the point subject to potential (PSP or q) to he obstacle or 
object.  
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• Repulsive Potential

Potential Field Method
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)()()()( qUqFqFqF repatt 

+ =

A first-order optimization 

algorithm such as gradient 

descent (also known as 

steepest descent) can be 

used to minimize this function 

by taking steps proportional 

to the negative of the gradient.

• The resulting force

Potential Field Method
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◊ Gradient descent is a first-order optimization algorithm. 

◊ To find a local minimum of a function using gradient descent, 

one takes steps proportional to the negative of the 

gradient (or of the approximate gradient) of the function at 

the current point. 

GradientDescent(xinit, xfinal, -f)

while  xinitxfinal

xn+1 = xn -nf(xn),    n0

end

• Gradient Descent or Steepest Descent

Potential Field Method
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where

GradientDescent(xo, xfinal, -f)

while  xoxfinal

xn+1 = xn -nf(xn),    n0

end

 >0 is a small enough number. 

Note that the step size  must be small enough to ensure that 

we do not collide with an obstacle or overshoot our goal position.

The value of the step size γ is allowed to change at every 

iteration.

• Gradient Descent or Steepest Descent

Potential Field Method



MUSES_SECRET: ORF-RE Project   - © PAMI Research Group – University of Waterloo 72/2272L9, SPC418: Autonomous Vehicles Design and Control- Zewail City of Science and Technology - Fall 2016 ©  Dr. Alaa Khamis

We have:
F(xo)  F(x1)  F(x2) … F(xfinal)

GradientDescent(xo, xfinal, -f)

while  xoxfinal

xn+1 = xn -nf(xn),    n0

end

so hopefully the sequence  converges to the desired local 

minimum xfinal. Note that in practice, we will stop within some 

tolerance (like  ) of the final position to account for positional 

uncertainties, etc.

• Gradient Descent or Steepest Descent

Potential Field Method
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A Parabolic Well for Attracting to Goal

Parabolic Well Goal & Exponential Source for Obstacle

• Exemples

Potential Field Method
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Parabolic Well Goal & Two Exponential Source Obstacles

Parabolic Well Goal & Two Exponential Source Obstacles

Motion Planning Solvers

• Exemples
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Parabolic Well Goal & Multiple Exponential Source Obstacles

Modeling Walls in a Closed Workspace

• Exemples

Potential Field Method
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◊ Trap situations due to local minima: One major 

problem with this algorithm is preventing local minima. 

These are the points where the attractive and repulsive forces 

cancel each others. Local minima can exist by a variety of 

different obstacle configurations. There are several techniques 

to decrease or even avoid the local minima. 

• Problems of Potential Field Method

Potential Field Method
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The configuration qmin is a local minimum in the potential field. 
At qmin the attractive force exactly cancels the repulsive fore and 
the planner fails to make further progress.

• Problems of Potential Field Method

Potential Field Method

[4]
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Local Minimum Problem with the Charge Analogy
◊ The robot can get 

stuck in local 
minima.

◊ In this case the 
robot has reached 
a spot with zero 
force (or a level 
potential), where 
repelling and 
attracting forces 
cancel each 
other out.

◊ So the robot will 
stop and never 
reach the goal.

• Problems of Potential Field Method

Potential Field Method
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◊ No passage between closely spaced obstacles: There is 

no passage between closely spaced obstacles; as the 

repulsive forces due to the first and the second 

obstacle add up to a force pointing away from the 

passage. Thus the robot will either approach the passage 

further or it will turn away. 

• Problems of Potential Field Method

Potential Field Method
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◊ Oscillations in Narrow Passages: The robot experience 

repulsive forces simultaneously from opposite sides 

when traveling in narrow corridors resulting in an unstable 

motion. 

◊ The scenario where the goal is located near an obstacle

such that the repulsive force can be larger than the attractive 

force resulting in a motion away from the goal instead of 

reaching it. 

• Problems of Potential Field Method

Potential Field Method
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